Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817
ثبت نشده
چکیده
The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between = M M 10 10 ej 3 2 for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if 10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.
منابع مشابه
Dynamics, nucleosynthesis, and kilonova signature of black hole - neutron star merger ejecta
We investigate the ejecta from black hole neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of r-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-rela...
متن کاملSwift and NuSTAR observations of GW170817: Detection of a blue kilonova.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger...
متن کاملAn R-process Kilonova Associated with the Short-hard Grb 130603b an R-process Kilonova Associated with the Short-hard Grb 130603b
We present ground-based optical and Hubble Space Telescope optical and near-IR observations of the shorthard GRB 130603B at z = 0.356, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered transient (a “kilonova”). The early afterglow fades rapidly with α . −2.6 at t ≈ 8 − 32 hr post-burst and has a spectral index of β ≈ −1....
متن کاملAn R - Process Kilonova Associated With the Short - Hard Grb
We present ground-based optical and Hubble Space Telescope optical and near-IR observations of the shorthard GRB 130603B at z = 0.356, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered transient (a “kilonova”). The early afterglow fades rapidly with α . −2.6 at t ≈ 8 − 32 hr post-burst and has a spectral index of β ≈ −1....
متن کاملSignatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers
We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion discs formed in neutron star mergers. We compute the element formation in disc outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disc evolution. We employ long-term axisymmetric hydrodynamic disc simulations to model the eje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017